Решение задач в ЕГЭ (комбинаторика, системы счисления, задание №8)

13.01.2022 0 Автор : Марина Николаевна
Решение задач в ЕГЭ (комбинаторика, системы счисления, задание №8)

Задача 8 по информатике ЕГЭ относится к комбинаторике и системе счисления. Её можно решить путем написания кода. Но для этого нужно будет потратить довольно много времени. Если не понимать как это решается вручную, то код писать опасно.

Задача № 8 (первый вариант) по системе счисления и комбинаторика

Данную задачу лучше решать вручную, так как это не занимает много времени. И так первое возможное условие задачи:

задача 8 ЕГЭ

Эта задача относится к задаче с системой счисления.

Для того, чтобы решить эту задачу, нужно использовать систему счисления.

Буква Е – 0, буква Л – 1, буква М – 2, буква Р – 3, буква У-4.

В результате мы видим пятиричную систему счисления.

ЕЕЕЕ – 0000    0

ЕЕЕЛ – 0001    1

ЕЕЕМ- 0002     2

ЕЕЕР – 0003     3

ЕЕЕУ – 0004    4

ЕЕЛЕ – 0010    5

Несмотря на то, что нумерация букв начинается с нуля, а список набора букв начинается с единицы.

Раз нумерация строк начинается с 1, то набор букв ЛЕЕЕ  будет на 126 месте.

Ответ: 126

Задача № 8 ЕГЭ (второй вариант) на системы счисления и комбинаторика

Решение

АААА  00000               0

ААААО 00001             1

ААААУ 00002              2

АААОА 00010             3

Опять помним, что список начинается с единицы, поэтому 210-1 = 209

Мы работаем с числом 209, но оно дается в десятичной системе счисления.

Для того, чтобы восстановить слово, надо перевести полученное место в троичную систему счисления:

2 меньше трех, поэтому читаем число в обратном порядке: 21202

Теперь составляем из чисел буквы: УОУАУ

Ответ: УОУАУ

Задача № 8 ЕГЭ (третий вариант) системы счисления и комбинаторика

Здесь пятибуквенные слова. Опять определяем действительный номер с учетом, что нумерация идет с 1.

150-1 = 149

Присваиваем каждой букве цифры, начиная с нуля по порядку. Нумерация слов в списке начинается с единицы. А вот нумерация цифр в числе с нуля.

ЛЛЛЛЛ   00000    0

ЛЛЛЛН   00001    1

ЛЛЛЛР    00002   2

ЛЛЛЛТ   00003    3

ЛЛЛНЛ   00010    4

В результате 149 в десятичной системе счисления переводим в четверичную путем деления  149 на четыре. Затем собираем остатки с конца в начало.

системы счисления

Получаем РННН, но у нас по условию нужно пятибуквенное слово. Для этого необходимо в начало слова добавить ничего не значащий ноль: 02111

Теперь ответ будет ЛРННН

Ответ: ЛРННН

Задача № 8 ЕГЭ (четвертый вариант) на системы счисления и комбинаторика

Числа начинаются с нуля, поэтому говорим о пятиричной системе счисления:

ААААА  00000    0

ААААК  00001    1

ААААЛ  00002    2

ААААО 00003    3

ААААШ 00004    4

АААКА 00010     5

Мы сначала найдем число, а затем добавим 1.

ШКОЛА – пишем в пятиричной системе счисления – 41320

ШКОЛА  в пятиричной системе счисления 41320, в десятичной системе счисления 2710

Ответ: 2710+1 = 2711

Задача № 8 (пятый вариант) системы счисления и комбинаторика

АААА     0000   0

АААВ     0001   1

АААД    0002    2

АААП    0003    3

АААР    0004    4

ААВА    0010    5

В условии сказано, что слово не содержит гласных и не содержит одинаковых букв. Поэтому нас интересует слово: ВДПР = 1234 (система счисления пятиричная).

Буквы ставим по алфавиту.

Необходимо преобразовать в десятичную систему счисления:

системы счисления

ВДПР в пятиричной системе 1234 , в десятичной системе 194. Это число. А нужно номер, номер будет на 1 больше.

194+1 = 195

Ответ: 195

Задача № 8 ЕГЭ (шестой вариант) система счисления и комбинаторика

система счисления и комбинаторика

АААА   0000   0

АААВ   0001   1

АААД  0002    2

АААП  0003    3

АААР  0004    4

ААВА  0010    5

В условии сказано, что слово не содержит гласных и не содержит одинаковых букв. Поэтому нас интересует слово: ВДПР = 1234 (система счисления пятиричная). Буквы ставим по алфавиту.

Необходимо преобразовать в десятичную систему счисления:

ВДПР в пятиричной системе 1234 , в десятичной системе 194. Это число. А нужно номер, номер будет на 1 больше.

194+1 = 195

Ответ: 195

Задача № 8 ЕГЭ (седьмой вариант) система счисления и комбинаторика

Дано 4 буквы, система счисления четверичная. Расписываем:

ООООО    00000

ООООП    00001

ООООР    00002

ООООТ    00003 

ОООПО   00010

В четверичной системе счисления указанные в условии слова представляют собой следующие числа:

Переведем эти числа в десятичную систему счисления:

системы счисления и комбинаторика

786 – ТОПОР

531 – РОПОТ

Чтобы найти количество между ними, то мы должны найти разницу:

786-531 = 255

Но по условию задания надо найти количество слов, включая эти слова, то надо прибавить 1.

255+1 = 256

Ответ: 256

Задача № 8 ЕГЭ (восьмой вариант) система счисления и комбинаторика

Обозначим позиции букв в словах.

У нас всего 3 буквы.

Первую букву можно выбрать только 3 способами, вторую – тоже тремя способами, третью тоже тремя.

Ответ: 243

Задача № 8 ЕГЭ (девятый вариант) система счисления и комбинаторика

системы счисления и комбинаторика

Здесь вводится ограничение, буква К встречается только один раз.

Трехбуквенные слова.

Соответственно схематически строим схему слова:

 

____   _____   ______

Представьте, буква К окажется только на первом месте. Больше мы не можем использовать. Соответственно, на второе место можно поставить любую букву из оставшихся, т.е. 4 варианта.

К*4*4 = 16 (К = 1)

Но буква К может находиться и на втором месте, и на третьем месте.

4*К*4 = 16

4*4*К = 16

Далее используем комбинаторные правила сложения: 16+16+16 = 48

Ответ: 48

Решение задач по теме «Информационные модели» можно посмотреть по ссылке.

Задача № 8 ЕГЭ (десятый вариант) система счисления и комбинаторика

система счисления и комбинаторика

Всего есть 4 буквы. Слова составляем пятибуквенные.

Ограничение: в каждом слове одна гласная буква. У нас гласные буквы: И,А.

Согласные буквы встречаются любое количество раз или не встречаются совсем.

Нам необходимо рассмотреть два случая, когда мы составляем слова с буквой А, и слова с буквой И.

Итого 16*5 = 80

По аналогии составляем также слова с буквой И, получим те же самые 80 слов.

В результате: 80+80 =160

Ответ: 160 слов с этими ограничениями.

Задача № 8 ЕГЭ (одиннадцатый вариант) система счисления и комбинаторика

Условие: Василий составляет четырех буквенные коды из букв Г,Е,Р,О,Й. Каждую букву можно использовать любое количество раз, при этом код не может начинаться с буквы Й т должен содержать хотя бы одну гласную. 

Сколько различных кодов может составить Василий.

Букв 5, слова 4-х буквенные.

Есть ограничения: не должно начинаться с Й и содержать хотя бы одну гласную букву.

В этой задаче надо использовать не только комбинаторику, но и теорию множества.

Принцип

Для того, чтобы определить количество слов, которое содержит хотя бы одну гласную букву, то можно схематически раскрыть вопрос:

А – это множество кодов или слов, которые могут быть составлены по правилу задачи.

Теперь среди этого набора вычленим только те, которые вообще не содержат гласных букв (множество В)

Из А вычтем В, то получим множество С, которое содержит слова, которые содержат хотя бы одну гласную.

комбинаторика

Теперь определим сколько же будет слов в множестве А.

Слова четырехбуквенные. Кроме Й на первом месте может стоять 4 возможных буквы.

На втором месте может стоять все 5 букв по очереди.

А: 4*5*5*5 = 4*125 = 500

Помним, что Й – согласная буква

В: 2*3*3*3 = 2*27=54

Количество слов, в которых нет гласных 54

Количество слов, которые содержат хотя бы одну гласную: 500-54 = 446

Ответ: 446.

Задача № 8 ЕГЭ (двенадцатый вариант) система счисления и комбинаторика

Условие задачи: Вася составляет трехбуквенные слова, в которых есть только буквы В,Е,С,Н,А. Причем буква А используется в каждом слове хотя бы 1 раз. Каждая из других допустимых букв может встречаться в слове любое количество раз или не встречаться совсем. Словом считается любая допустимая последовательность букв, не обязательно осмысленная. 

Сколько существует таких слов, которые может написать Вася?

Задача содержит условие, при котором нужно применять при решении комбинаторику и теорию множеств.

Условия: слова трехбуквенные, количество букв – 4, слова содержат хотя бы 1 раз букву А.

Опять берем множество А в которое входят все слова с буквой А

В – множество в котором вообще нет буквы А

__ __ ___

Мощность множества А определяем следующим образом:

На первую позицию букву А можно поставить 5 способами, на вторую – 5 способами и на третью – 5 способами:

А:  5*5*5 =125

В: 4*4*4 = 64

Множество С в котором есть хотя бы одна буква А: А\В (разность)

125-64 = 61

Ответ: 61

Мы рассмотрели двенадцать видов задач по теме системы счисления и комбинаторики, которые в ЕГЭ по информатике размещаются как задание № 8. Однако, ежегодно вносятся изменения и возможно возникновение других типов задач.